Lec 7

Introduction: Accélérateurs, microscopes électroniques... B² devient localisé des particules rapides

I la force de Lorentz
1) Dérivation expérimentale en laboratoire
2) Expression
3) Aspect énergétique

II Raccordement dans un champ B uniforme:
1) Équation différentielle du mouvement
2) Équations paramétriques
3) Trajectoires
 a) Cas général : trajectoire hélicoïdale rigide et magnétique
 b) B ≡ B : trajectoire circulaire
 c) Expérience

IV Applications :
1) Déviation magnétique (à avec l'électrique)
2) Accélérateurs de particules
3) Spectromètre de masse

III Raccordement dans un champ B non uniforme:
1) Principe de la bouteille magnétique
2) les coffres de Van Hallen

Conclusion

Bibliographie:
- Puey: Relativité
- Thépa méth II
- Gaug: Magnétisme (exercices)
- Alario Finn: Phys II
- Polj TP Fjorg Hermes
Leçon n°9
Pouvoir d'une particule chargée de un champ E indépendant de l'
Aplications.

Prérequis : champ E, Théorie de la relativité.
L'étude se fait de un référentiel
Annexe que fixe et P

I. La force de Lorentz
1. Prise en évidence

Pole approché
Trace
Pole S approché

2. Expression

Pour une charge q, de direction \vec{v} de un champ E, la
particule est soumise à : $\vec{F} = q \vec{E} \times \vec{B}$

3. Aspect énergétique

P de Lorentz : $\vec{P} \cdot d\vec{r} = 0$
$P = d\vec{E}c = d\vec{v} \cdot (sa direction change)$
Équation différentielle du mouvement dans un champ uniforme

\[\frac{d\mathbf{p}}{dt} = q\mathbf{A} \]

\[\beta^2 \approx \frac{\gamma - 1}{\gamma} \]

\[\gamma = \frac{1}{\sqrt{1 - \beta^2}} \]

On utilise la théorie relativiste car l'application est l'accélération des particules.

\[\mathbf{a} = \frac{q}{\gamma m} \mathbf{B} \]

pulsation cyclotron

Equation paramétrique

\[\begin{cases} \dot{x} = \omega \cos \varphi & (1) \\ \dot{y} = \omega \sin \varphi & (2) \\ \dot{\varphi} = 0 & (3) \end{cases} \]

Pour \(c = x + iy \), \(\omega c = \omega x + i\omega y = N \cos \theta i = Ni \)

\((2) \times \dot{x} + (1) \Rightarrow \dot{x} + i \dot{y} = -i\omega (\dot{x} + i\dot{y}) \)

\[\dot{c} = -i\omega c \]

\[\Rightarrow c = A \exp(-i\omega t) \]

\(i \dot{c} = -i\omega c \Rightarrow i \dot{c} = \dot{c} \Rightarrow c = A \exp(-i\omega t) \)

\[i \dot{c} = \dot{c} \Rightarrow c = Ni \exp(-i\omega t) \]

\[i \dot{c} = N \exp(-i\omega t) \]

\[\dot{c} = -i\omega A \exp(-i\omega t) \]
\[x = \frac{N_i}{\omega c} \sin(\omega ct) \]
\[y = -\frac{N_i}{\omega c} (1 - \cos(\omega ct)) \]
\[z = N_i t \]

3) Trajectoire:

Cas général:
\[x^2 = \left(\frac{N_i}{\omega c} \right)^2 \sin^2 \omega ct \]
\[(y + N_i)^2 = \left(\frac{N_i}{\omega c} \right)^2 \cos^2 \omega ct \]
\[(y + R)^2 + z^2 = R^2 \]

On a appelé \(B = R = \frac{P_i}{q} \) rigidité magnétique.

Utilisé dans les chambres à bulles où les particules découlent des cœurs, on mesure \(R \) et on détermine \(P_i \).

Si \(q \omega t = 0 \) \(\Rightarrow \) Trajectoire hélicoïdale

par de l'hélice : \[\frac{1}{\omega c} \] \(N_i = \frac{P_i}{qB} \)

Si \(\vec{N}_i \perp \vec{B} \):
Il ne reste alors que le cercle de le plan \(Ox'y' \)

\[\begin{cases} \begin{align*} x &= \frac{P_i}{qB} \\ y &= 0 \end{align*} \end{cases} \]

Pour déterminer la charge de la particule de la chambre à bulles
1 S Applications :

- la déflexion magnétique : (TV, tube cathodique)

\[R = \frac{m v_0}{e B} \]

- à petit \(L \) (faisceau de TV)

\[l = R x \]

\[l = \frac{e B}{m v_0} \]

\[x = \frac{e B}{m v_0} \]

- le cyclotron (Clavé, 1932)

les particules sont accélérées entre les déc et deviennent dans les déc :

\[\Rightarrow R \frac{v}{c} \text{ alors que } v = c \]

Après \(n \) traversées :

\[E_{cm} = \frac{1}{2} m v^2 \]

\[R_m = \frac{m u_0}{q B} \Rightarrow R_m = R \frac{u_0}{v_0^2} \]

\[E_{cm} = \frac{1}{2} m v^2 \]

\[B = \frac{q B}{2} \Rightarrow E_{cm} = 4.87 \text{ MeV} \]

\[V = 10^6 \text{ V} \]
le spectrographie de masse.

Le but est de tracer les particules selon leur masse et leur charge.

\[R = \frac{m v_0}{q B} \]
\[R \text{ différences } m \text{ et } q \]

À la sortie \(N_0 = \sqrt{\frac{2qU'}{m}} \).

\[q = \frac{2U}{m B^2 R} \]
Pour des ions \(q = m \).

III. Champ \(B \) non uniforme.

1) Équation de la boussole magnétique.

\[\frac{d}{dt} \begin{vmatrix} B_n = 0 \\ N_{01} = -\frac{q B^2 (6)}{m} \\ N_{02} = N_0 \end{vmatrix} \]

On le champ est cylindrique donc

\[B_n = -\frac{1}{2} \frac{dB}{ds} \]

\[m \frac{dv}{dt} = q v B_n \]

\[m \frac{dv}{dt} = -q \nu m B_n \]

\[m \frac{dv}{dt} = -q \nu m B_n \]

\[\frac{dN_0}{dt} = \frac{1}{B_0} \]

\[\frac{N_0^2}{B_0^2} = \text{conste} \]
1° Si B est constant, la trajectoire reste la même dans le tube de champ : hélice qui s'entoure.

$L = L_1^2 + L_2^2$; si $L_1 > 0$, alors $L_2 < 0$.

2° Les ceintures de Van Allen :

Les lignes de champ se resserrent aux pôles.

La particule arrive au pôle et elle a assez d'énergie, elle arrive à la terre en suivant les lignes de champ.

Si elles n'ont pas assez d'énergie, elles rebroussent chemin, si elles arrivent jusqu'à l'Equateur, elles ont tant d'énergie et elles sont bloquées le long de la ligne de champ en faisant de de l'ionisation.

Au bout de 90 minutes, elles perdent une autre particule, gagnant de l'énergie, soit au point d'arrivée du pôle pour ioniser l'atmosphère.

3° Confinement magnétique :

On peut concevoir un plateau à très haute T^φ (10^5) pour que les particules de s'encontrant fission

*
les paires se retrouvent pas. On utilise un tourne-magnétique dans lequel des particules sont piégées.

Conclusion:
On peut se demander quels sont les phénomènes observés quand le champ B dépend du temps.

Bibliographie:
- Pesce (relativité) / Hornea (méca II)
- Gauvin (magnétisme) / Almeix - Finn (phys.)

* Pour les calculs compliqués, on peut en dire 2 mots sur un transparent.

* Pour la TV, on peut faire la correction relativiste en ajoutant k à la distance.

Problème de la cyclotron:
Il faut introduire la relativité, sinon synchronisation de cyclotron alors la fréquence du cyclotron d'adapte au flux et à mesure. (du le cyclotron, il faut se rapprocher à chaque fois.)

* Dans une chambre à bulles, on utilise des abaque échallonné afin de déterminer des rayons.

* Démonstration $B_r = -\frac{\gamma^2}{\gamma^2} \frac{dE_y}{dt}$

 $\frac{d\theta}{dt} + \frac{d\theta}{dt} = 0$
\[\int B \cdot dS = 0 : \Phi = B \cdot dS = B(1 + Cd^2) \frac{dV}{dS} = B_0 T \frac{dV}{dS} + B_0 T \frac{dV}{dS} \]

\[\Phi = B(1 + Cd^2) \frac{dV}{dS} \]

\[B_c = \frac{1}{2} \frac{A B}{d^2} \]

On utilise des champs E dans les oscillateurs où on seurt des défis de tension en fonction du temps. Il est plus facile d'utiliser une tension qu'un champ B à transformer.

- Force magnétique

![Diagramme de champ magnétique](image)

En encliquant les bobines de Helmoltz, on peut obtenir le même genre de champ.