

Chapitre 5: Le travail d'une force :

Introduction : fiche élève

Considérons des **objets qui subissent des forces dont le point d'application se déplace** : Par exemple :

On peut faire changer un solide d'altitude : imaginons une grue transportant une palette, la force de tension du fil à son point d'application qui se déplace (puisque le solide se déplace), on arrive à lever le chargement.

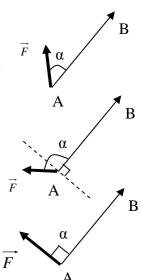
On dit alors dans ce cas que la force exercée par la grue **travaille**.

L Travail d'une force constante lors d'un déplacement rectiligne :

- 1) Définition:
- a. Une force est dite constante lorsque sa valeur, son sens et sa direction ne varient pas au cours du temps.
- b. Le travail d'une force constante \overrightarrow{F} pour un déplacement rectiligne \overrightarrow{AB} de son point d'application est le produit scalaire de \overrightarrow{F} par \overrightarrow{AB} . Il est noté:

Exercices n°5,8 et 11 p103

- 2) Le travail : grandeur algébrique, différents types de travail :
- > Selon la valeur de l'angle α , le travail peut être **positif**, **négatif ou nul**, c'est pour quoi on dit que c'est une grandeur algébrique.
- Différents types de travail :
 - a. Si α <90° alors cos α >0 et W>0 (travail positif). On remarque que la force va favoriser le mouvement dans le sens du déplacement \overrightarrow{AB} . On dit que le travail est moteur.
 - b. Si $\alpha > 90^{\circ}$ alors $\cos \alpha < 0$ et W<0 (travail négatif). La force va alors s'opposer au mouvement du solide, on dit qu'elle effectue un travail résistant.
 - c. Si $\alpha = 90^{\circ}$ alors $\cos \alpha = 0$ et W=0 (travail nul).



3) Application:

Un remorqueur tire un pétrolier sur une distance de 600 m avec une force constante de valeur F = 200 kN. La droite d'action de la force et la direction du déplacement rectiligne font un angle de 30° .

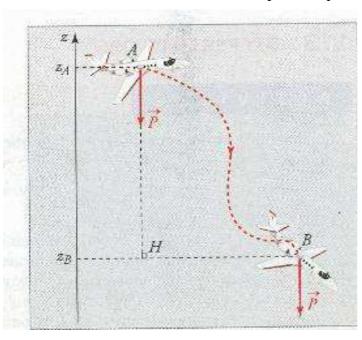
- a. Calculer le travail fournit par la force exercée par le câble sur le pétrolier. Comment qualifie t-on le travail ?
- b. Si l'angle était de 150°, quel serait la valeur du travail, comment le qualifierai-t-on?

II Travail d'une force lors d'un déplacement quelconque :

1) Le travail du poids:

On pourra considérer que dans une zone étendue à quelques kilomètres au dessus de la surface de la terre, le poids est une force constante.

> Considérons un avion par exemple dans sa phase d'atterrissage :



Calculons le travail du poids au cours de son déplacement entre A et B :

Le travail s'écrit :

$$W_{AB}(\overrightarrow{P}) = \overrightarrow{P} . \overrightarrow{AB} = \overrightarrow{P} . (\overrightarrow{AH} + \overrightarrow{HB})$$

$$= \overrightarrow{P} . \overrightarrow{AH} + \overrightarrow{P} . \overrightarrow{HB}$$

Or l'angle entre \overrightarrow{P} et \overrightarrow{HB} est un angle de 90° donc le produit scalaire de ces deux grandeurs sera nul.

soit
$$W_{AB}(\overrightarrow{P}) = \overrightarrow{P} \cdot \overrightarrow{AH}$$

De plus
$$\overrightarrow{AH} = z_A - z_B$$
 et $P = m * g$

Finalement

$$W_{AB}(\overrightarrow{P}) = m*g*(z_A-z_B)$$

Conclusion:

Lorsque le **centre d'inertie** G d'un corps passe **d'un point A à un point B**, le **travail du poids** dépend seulement de l'altitude \mathbf{z}_A du point de départ et de l'altitude \mathbf{z}_B du point d'arrivée. Il ne **dépend donc pas du chemin suivi.**

Rq : Selon le signe de la différence d'altitude, le travail est soit moteur, soit résistant.

Exercice n° 19 p104

2) Généralisation:

> Le travail d'une force constante \vec{F} dont le point d'application M se déplace d'un point A à un point B ne dépend pas du trajet suivi par M entre A et B.

$$\mathbf{W}_{\mathbf{A}\mathbf{B}} = \overrightarrow{F} \cdot \overrightarrow{AB}$$

> Travail d'un ensemble de forces :

Soit un ensemble de force \vec{F}_1 ; \vec{F}_2 ; ... dont les points d'application subissent le même déplacement \vec{AB} et telles que $\vec{F} = \vec{F}_1 + \vec{F}_2 + ...$

Alors:

$$W_{AB} = \overrightarrow{F}_{1.} \overrightarrow{AB} + \overrightarrow{F}_{2.} \overrightarrow{AB} + \dots = (\overrightarrow{F}_{1} + \overrightarrow{F}_{2} + \dots). \overrightarrow{AB} = \overrightarrow{F}. \overrightarrow{AB}$$

III Puissance d'une force :

1) Définition:

La puissance moyenne d'une force est le quotient du travail W qu'elle fournit par le temps Δt pendant lequel elle le fournit :

$$P = \frac{W}{\Delta t}$$

$$\begin{cases}
P : \text{Puissance exprimée en Watt (W)} \\
W : \text{travail exprimé en Joules (J).} \\
\Delta t : \text{durée (s)}
\end{cases}$$

2) Puissance d'un ensemble de forces :

Un ensemble de forces va fournir un travail $W = \Sigma Wi$.

Donc la puissance moyenne P de cette ensemble de force est donnée par :

$$P = \frac{W}{\Delta t} = \frac{\Sigma Wi}{\Delta t} \text{ soit } P = \Sigma Pi$$

Quelques ordres de grandeurs de puissances :

Un aspirateur : 10^3 W / Une voiture : 10^6 W / Réacteur nucléaire : 900MW / La fusée Ariane : 10^9 W

Exercices n°22 et 31 p 104 et 106