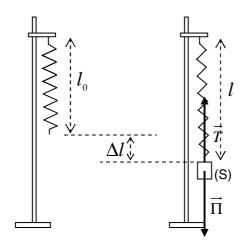
# TP N°3 SUITE : MODELISATION DE L'ACTION D'UN RESSORT


#### **Objectifs:**

On veut relier l'allongement d'un ressort à la force qu'il exerce en son extrémité sur un objet qui lui est suspendu.

On veut trouver la relation entre une force et un volume d'eau déplacé.

### **IAction d'un ressort:**

1) Dispositif expérimental :



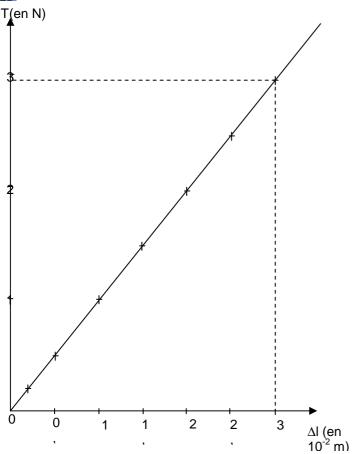
 $l_0$  = longueur à vide du ressort l = longueur du ressort en charge  $\Delta l = l - l_0$  = allongement du ressort

Forces exercées par l'extérieur sur le solide :

T: tension du ressort  $\overrightarrow{\Pi}$ : poids du solide

#### 2) Protocole expérimental :

- a. Faire l'inventaire des forces qui s'exercent sur la masse du schéma précédent et schématiser-les
- b. En déduire la relation entre le poids de cette masse et l'action qu'exerce le ressort sur cette dernière.
- c. Mesurer la longueur l<sub>0</sub> du ressort au repos.
- d. Pour les différentes valeurs de masses indiquées ci-dessous, remplissez le tableau suivant. On prendra  $g = 9.8 \text{ N.kg}^{-1}$ .


| Masse m (en g)                                                           | 0 | 20       | 50                   | 100      | 150      | 200                  | 250      | 300      |
|--------------------------------------------------------------------------|---|----------|----------------------|----------|----------|----------------------|----------|----------|
| Allongement $\Delta l = l - l_0$ (en m) (Réponses dépendant du ressort.) | 0 | 0,2.10-2 | 0,5.10 <sup>-2</sup> | 1,0.10-2 | 1,5.10-2 | 2,0.10 <sup>-2</sup> | 2,5.10-2 | 3,0.10-2 |
| Poids P du solide (en N)                                                 | 0 | 0,196    | 0,491                | 0,981    | 1,47     | 1,96                 | 2,45     | 2,94     |
| Tension T du ressort (en N)                                              | 0 | 0,196    | 0,491                | 0,981    | 1,47     | 1,96                 | 2,45     | 2,94     |

e. Représenter graphiquement les variations de la tension T du ressort en fonction de l'allongement  $(1-l_0)$  du ressort.

échelle : Ordonnées : 1 cm → 0.2 N

Abscisses : 1 cm → 1 cm (d'allongement du ressort)

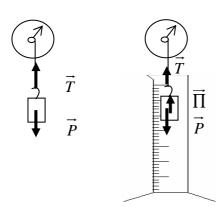
f. En déduire la relation entre la tension T du ressort et son allongement. (on peut alors définir une constante nommée constante de raideur du ressort, donner sa valeur et son unité).



#### Réponses:

La représentation graphique des variations de T en fonction de  $\Delta l$  est une droite passant par O, on en déduit que la valeur T de la tension du ressort est proportionnelle à l'allongement  $\Delta l$  du ressort.

En appelant k la constante de proportionnalité, on  $a: T = k \Delta l$  ou encore  $: T = k (l - l_0)$ .


Pour déterminer la valeur de k, on utilise les coordonnées d'un point situé sur la droite moyenne et qui est éloigné de l'origine (pour une meilleure précision du résultat).

$$k = \frac{2.94N}{3.0.10^{-2}m} = 98 N.m^{-1}$$

Pour le ressort choisi.

# II La poussée d'Archimède :

a.



b. Relation entre les forces:

 $1^{\text{er}}$  schéma :  $\vec{P} + \vec{T} = \vec{0}$ 

 $2^{\text{ème}}$  schéma :  $\vec{P} + \vec{T} + \vec{\Pi} = 0$ 

c. En considérant les normes des vecteurs :

$$\left\| \overrightarrow{\prod} \right\| = \left\| \overrightarrow{P} \right\| - \left\| \overrightarrow{T} \right\|$$

d. Soit V le volume d'eau déplacé :

On a alors  $m = \rho^* V$  donc :

 $P_{\text{vol d'eau}} = \rho^* V^* g \text{ (avec } g = 9.81 \text{ m.s}^{-1}\text{)}$ 

## **Matériel:**

Support + ressort + différentes masses marquées  $(0 \rightarrow 300 \text{ g})$  + un double décimètre Un dynamomètre + une éprouvette (assez large) + eau