

TPN°13:

REACTION ENTRE UN HYDROGENOCARBONATE ET L'ACIDE **CHLORHYDRIQUE**

Objectif:

Observer l'influence de la composition de l'état initial du système sur celle de l'état final

Hydrogénocarbonate de sodium, solution aqueuse d'acide chlorhydrique à 1,0 mol.L⁻¹, Bleu de bromothymol, eau de chaux.

Balance, spatule, entonnoir, ballons de baudruches, erlenmeyers de 100 mL, éprouvette graduée de 100 mL, 1 tube à essais.

I Expérience :

> Instructions:

- a. Introduisez avec précaution à l'aide d'un entonnoir 2.5 g d'hydrogénocarbonate de sodium (NaHCO_{3(s)}) en poudre dans un ballon de baudruche dégonflé.
- b. Versez dans un erlenmeyer 10 mL (ou 20 ou 40 ou 50 selon les groupes) d'une solution aqueuse d'acide
- chlorhydrique $(H_3O^+_{(aq)}+Cl^-_{(aq)})$ (c = 1.0 mol.L⁻¹) et quelques gouttes de bleu de bromothymol (BBT). c. Fixez délicatement le ballon sur l'ouverture de l'erlenmeyer en faisant attention de ne pas verser la poudre dans le récipient.
- d. Venez placer votre erlenmeyer sur le bureau du professeur afin que les quatre erlenmeyers soient côte à côte.
- e. Redressez rapidement et en même temps les quatre ballons de baudruche afin que la poudre tombe dans le liquide.

> Ouestions:

- a. Faites un schéma annoté de l'expérience au cours de la transformation.
- b. Notez précisément vos observations.

> Test de reconnaissance du gaz formé :

- a. Prenez un tube à essais et versez y 2 mL d'eau de chaux environ.
- b. Sortez l'extrémité du ballon de baudruche de l'erlenmeyer tout en le conservant gonflé.
- c. Laissez-le se dégonfler dans le tube à essais.

> Ouestions:

- Faites un schéma de la manipulation et notez vos observations.
- Interprétez cette expérience.

II Exploitation des résultats :

Attendez la fin de la réaction pour répondre aux questions suivantes (au besoin, agitez les erlenmeyer pour accélérer la réaction).

A chaque question, remplissez dans le même temps le tableau de la question f.

- Comparez la taille des ballons et concluez : de quoi dépend la quantité de produit formé ?
- Comparez la couleur de l'indicateur coloré dans les différents erlenmeyers. Dans quel cas, l'acide est-il totalement consommé ? (faites un témoin, acide + BBT et observez la couleur)
- c. Observez s'il reste du solide au fond des erlenmeyers. Dans quel cas, NaHCO₃ est-il totalement consommé?
- d. Pour chacune des 4 expériences, schématisez la transformation chimique qui a lieu. Dans l'état initial, indiquez les quantités initiales de réactifs (ici au lieu des quantités de matières, on notera plutôt la masse de NaHCO_{3(s)} et le volume de $H_3O^+_{(aq)} + Cl^-_{(aq)}$ mis en présence).

- e. Ecrivez l'équation de cette réaction chimique.
- f. Remplissez le tableau récapitulatif suivant :

Erlenmeyer	1	(v = 10 mL)	2	(v = 20 mL)	3	(v = 40 mL)	4	(v = 50 mL)
Taille du ballon à l'état								
final								
Coloration de la solution								
à la fin								
Solide restant au fond de								
l'erlenmeyer à la fin								
n _{NaHCO3} initiale (mol)								
n _{H3O+} initiale (mol)								
Réactif restant à la fin de								
la réaction (en excès)								
Réactif entièrement								
consommé (en défaut)								

g. Conclusion : la composition de l'état initial intervient-elle sur l'état final ?

III Comment déterminer les quantités de matière des réactifs et produits pendant la réaction ?

On peut évaluer **l'avancement de la réaction** précédente par la **quantité de matière d'hydrogénocarbonate qui disparaît** au cours de la réaction.

a. **Appelons x cet avancement**. Complétez la phrase suivante :

Quand 1 mole d'ions hydrogénocarbonate réagit, mole d'ions H_3O^+ réagit, mole de dioxyde de carbone, mole de Na^+ et mole d'eau apparaissent.

Quand x mole d'ions hydrogénocarbonate réagissent, mole d'ions H_3O^+ réagissent, mole de dioxyde de carbone, mole de Na^+ et mole d'eau apparaissent.

b. Compléter le tableau d'avancement de la réaction ci-dessous :

Conditions initiales: P et T ambiantes - 50 mL d'acide chlorhydrique - 5 g de NaHCO₃

Equation de la réaction :		NaHCO ₃ (s) +	$H_3O^+(aq)$	\rightarrow CO ₂ (g) $+$	+ Na ⁺ (aq) +	2 H ₂ O (l)			
Etat du	Avancement	Quantité de matière des différentes espèces chimiques (mol)							
système	(mol)	n (NaHCO ₃)	n (H ₃ O ⁺)	n (CO ₂)	n (Na ⁺)	n (H ₂ O)			
Etat initial	0								
Etats intermédiaires	0,02								
	0,04								
	X								
Etat final	X _{max}								

Remarque:

Ce TP marche aussi bien en remplaçant l'acide chlorhydrique par de l'acide éthanoïque de même concentration.