

# IV Etat d'équilibre concernant les réactions d'estérification et d'hydrolyse :

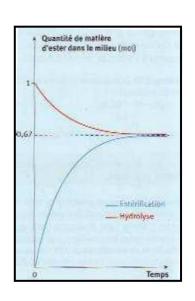
## 1) Etude expérimentale :

## a. Principe:

Pour étudier cet équilibre, on va suivre l'évolution de **mélanges équimolaires**, d'acide éthanoïque et d'éthanol d'une part, et d'éthanoate d'éthyle et d'eau d'autre part.

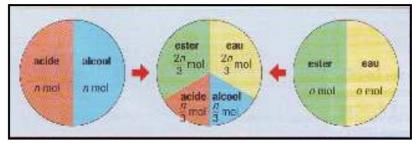
Marcellin **Berthelot** et Péan de saint Gilles ont réalisé ces études en procédant comme suit :

- > On enferme les différents mélanges dans des **ampoules scellées**.
- > On les place dans un **même milieu**, par exemple à une température de  $100^{\circ}$ C, à une **date précise** choisie comme étant t = 0.
- > On sort alors une ampoule à la date à laquelle on veut connaître l'état du système et on détermine la quantité de matière d'acide restant ou formée par titrage.
- > Ainsi, on peut connaître l'état du système à l'aide des tableaux d'avancement :


| Equation de la réaction d'estérification |                   | $R\text{-COOH}  +  R\text{'-OH}  \rightarrow  R\text{-COO-R'} + \qquad H_2O$ |                     |                 |                                    |  |
|------------------------------------------|-------------------|------------------------------------------------------------------------------|---------------------|-----------------|------------------------------------|--|
| Etat                                     | Avancem ent (mol) |                                                                              |                     |                 |                                    |  |
| Initial                                  | 0                 | n                                                                            | n                   | 0               | 0                                  |  |
| En cours                                 | X                 | n - x                                                                        | n - x               | X               | X                                  |  |
| Etat d'équilibre                         | Xéq               | n - x <sub>éq</sub>                                                          | n - x <sub>éq</sub> | X <sub>éq</sub> | $\mathbf{x}_{\mathrm{\acute{e}q}}$ |  |

La quantité de matière d'acide à l'équilibre est  $n_a = n - x_{éq}$ , on obtient donc  $x_{éq}$  et les autres quantités de matière des réactifs et/ou des produits.

En effectuant le même travail sur le tableau d'avancement relatif à l'hydrolyse, on comprend que **nous obtiendrons l'avancement de la réaction directement avec la quantité de matière d'acide** dans l'état d'équilibre.


### b. Résultats:

Si nous traçons la courbe, pour les réactions d'estérification et d'hydrolyse, de la **quantité de matière d'ester présent dans le milieu en fonction du temps**, Nous obtenons la courbe cicontre (en partant de mélanges équimolaires contenant une mole de chaque réactif).



#### c. Conclusion:

- > Ces courbes ont été obtenues pour un **temps de réaction de 200 heures environ**, ce qui prouve une nouvelle fois la **lenteur des deux réactions**.
- Nous voyons aussi que les deux réactions admettent une limite : il y a toujours 67% d'ester dans le milieu à l'état d'équilibre. On peut schématiser cela de la façon suivante :





# IV Etat d'équilibre concernant les réactions d'estérification et d'hydrolyse :

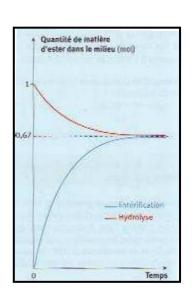
## 2) Etude expérimentale :

## d. Principe:

Pour étudier cet équilibre, on va suivre l'évolution de **mélanges équimolaires**, d'acide éthanoïque et d'éthanol d'une part, et d'éthanoate d'éthyle et d'eau d'autre part.

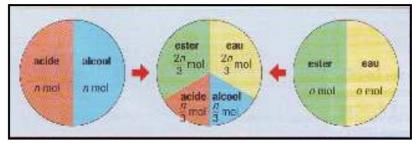
Marcellin **Berthelot** et Péan de saint Gilles ont réalisé ces études en procédant comme suit :

- > On enferme les différents mélanges dans des **ampoules scellées**.
- > On les place dans un **même milieu**, par exemple à une température de  $100^{\circ}$ C, à une **date précise** choisie comme étant t = 0.
- > On sort alors une ampoule à la date à laquelle on veut connaître l'état du système et on détermine la quantité de matière d'acide restant ou formée par titrage.
- > Ainsi, on peut connaître l'état du système à l'aide des tableaux d'avancement :


| Equation de la réaction d'estérification |                   | $R\text{-COOH}  +  R\text{'-OH}  \rightarrow  R\text{-COO-R'} + \qquad H_2O$ |                     |                 |                                    |  |
|------------------------------------------|-------------------|------------------------------------------------------------------------------|---------------------|-----------------|------------------------------------|--|
| Etat                                     | Avancem ent (mol) |                                                                              |                     |                 |                                    |  |
| Initial                                  | 0                 | n                                                                            | n                   | 0               | 0                                  |  |
| En cours                                 | X                 | n - x                                                                        | n - x               | X               | X                                  |  |
| Etat d'équilibre                         | Xéq               | n - x <sub>éq</sub>                                                          | n - x <sub>éq</sub> | X <sub>éq</sub> | $\mathbf{x}_{\mathrm{\acute{e}q}}$ |  |

La quantité de matière d'acide à l'équilibre est  $n_a = n - x_{éq}$ , on obtient donc  $x_{éq}$  et les autres quantités de matière des réactifs et/ou des produits.

En effectuant le même travail sur le tableau d'avancement relatif à l'hydrolyse, on comprend que **nous obtiendrons l'avancement de la réaction directement avec la quantité de matière d'acide** dans l'état d'équilibre.


## e. Résultats:

Si nous traçons la courbe, pour les réactions d'estérification et d'hydrolyse, de la **quantité de matière d'ester présent dans le milieu en fonction du temps**, Nous obtenons la courbe cicontre (en partant de mélanges équimolaires contenant une mole de chaque réactif).



#### f. Conclusion:

- > Ces courbes ont été obtenues pour un **temps de réaction de 200 heures environ**, ce qui prouve une nouvelle fois la **lenteur des deux réactions**.
- Nous voyons aussi que les deux réactions admettent une limite : il y a toujours 67% d'ester dans le milieu à l'état d'équilibre. On peut schématiser cela de la façon suivante :

