

$$\operatorname{TP}\,N^\circ 2:$$ DIFFRACTION DES ONDES ULTRASONORES ET LUMINEUSES

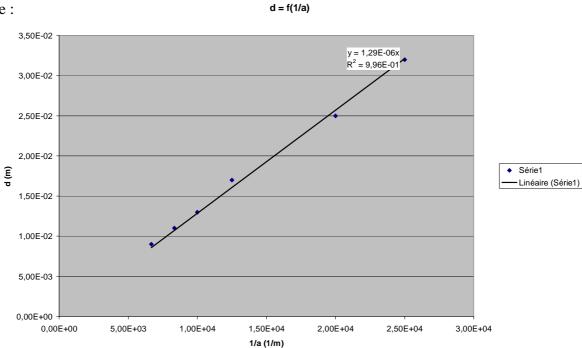
I Diffraction des ondes lumineuses :

Matériel:

Ecran gradué

Fils calibrés

Mesures:


Diamètre du fil (μm)	d (m)
40	3.10E-02
50	2.50E-02
80	1.65E-02
100	1.30E-02
120	1.10E-02
150	0.850E-02

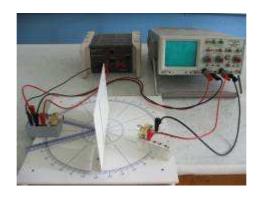
Attention: D est la distance entre le fil et l'écran!

Exploitation des résultats :

a. Figure de diffraction :

c. Coefficient directeur : $k = 1.29*10^{-6}$

Unité du coefficient directeur : On a $d = k \times \frac{1}{a}$ donc $k = d \times a = [m] \times [m] = [m^2]$


d. Trigonométrie : $\tan \theta = \frac{d}{D}$ mais comme θ est petit : $\theta = \frac{d}{D}$

e. On a donc: $\theta = \frac{d}{D} = \frac{\lambda}{a}$ d'où $\lambda = \frac{d \times a}{D} = \frac{k}{D} = \frac{1.29 \times 10^{-6}}{2} = 0.645 \times 10^{-6} = 645 nm$

Erreur relative : $\frac{|\lambda att - \lambda \exp|}{\lambda att} = \frac{|650 - 645|}{650} = 0.7\%$

II Diffraction des ondes ultrasonores :

Montage:

Mesures:

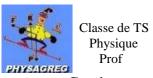
Angle (°)	Ucc (V)	Ucc ₂ (V)
-70	0.14	0.08
-60	0.18	0.24
-50	0.24	0.36
-40	0.28	0.44
-30	0.30	0.56
-20	0.42	0.60
-10	0.54	0.58
0	0.54	0.60
10	0.47	0.58
20	0.52	0.50
30	0.30	0.38
40	0.32	0.26
50	0.20	0.20
60	0.20	0.20
70	0.16	0.16

Angle (°)	Ucc (V)
-65	0.10
-60	0.12
-50	0.12
-40	0.06
-30	0.16
-20	0.06
-10	0.18
0	0.48
10	0.26
20	0.36
30	0.06
40	0.16
50	0.04
60	0.10
70	0.08

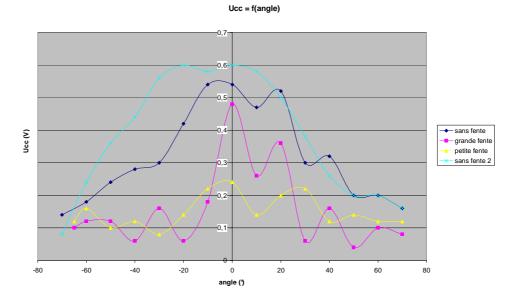
Angle (°)	Ucc (V)
-65	0.12
-60	0.16
-50	0.10
-40	0.12
-30	0.08
-20	0.14
-10	0.22
0	0.24
10	0.14
20	0.20
30	0.22
40	0.12
50	0.14
60	0.12
70	0.12

Sans fente

Avec grande fente


Avec petite fente

Exploitation des résultats :


a. Période et fréquence des ondes sonores diffractées : $T = 5*5.0*10^{-6} \text{ s} = 2.5*10^{-5} \text{ s}$;

$$f = \frac{1}{T} = \frac{1}{2.5 * 10^{-5}} = 4.0 * 10^4 Hz$$

b. Cette période et cette fréquence sont les mêmes que celles du signal émis.

c. Courbes:

d. On observe le phénomène de diffraction dans les deux cas, mais plus la fente est étroite, plus il y a un étalement de l'intensité des ondes ultrasonores.